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ABSTRACT

Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment
from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements
from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and
spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and
archiving. Examples of multispectral sensors we consider include the NASA 36 band MODIS imager, Meteosat
2nd generation 12 band SEVIRI imager, GOES R series 16 band ABI imager, current generation GOES 5
band imager, and Japan’s 5 band MTSAT imager. Conventional lossless compression algorithms are not able
to reach satisfactory compression ratios nor are they near the upper limits for lossless compression on imager
data as estimated from the Shannon entropy. We introduce a new lossless compression algorithm developed for
the NOAA-NESDIS satellite based Earth science multispectral imagers. The algorithm is based on capturing
spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. The
algorithm as presented has been designed to work with NOAA’s scientific data and so is purely lossless but lossy
modes can be supported. The compression algorithm also structures the data in a way that makes it easy to
incorporate robust error correction using FEC coding methods as TPC and LDPC for satellite use. This research
was funded by NOAA-NESDIS for its Earth observing satellite program and NOAA goals.

1. INTRODUCTION

The MODerate resolution Imaging Spectroradiometer (MODIS) is a key instrument aboard the Terra (EOS AM)
and Aqua (EOS PM) polar satellites. Terra’s orbit around the Earth is timed so that it passes from north to
south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon.
The MODIS instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands ranging in wavelength
from 0.4 µm to 14.4 µm. These 36 distinct spectral bands are divided into four separate Focal Plane Assemblies
(FPA): Visible (VIS), Near Infrared (NIR), Short- and Mid-Wave Infrared (SWIR/MWIR), and Long-Wave
Infrared (LWIR). Each FPA focuses light onto a certain section of detector pixels, which are relatively large,
ranging from 135 µm to 540 µm square. The large number and variety of detector pixels are what make the wide
variety of MODIS data possible. When light hits a detector pixel, it will generate a distinct signal depending on
the type of light it is sensitive to. The signals that the pixels generate are what scientists process and study to
learn about Earth’s land surfaces, water surfaces, and atmosphere.

In this paper we outline a new algorithm for lossless imager data compression. The algorithm can be thought
of as a pre-processing step to boost the compression of a purely spatial lossless 2D imaging algorithm such as
JPEG2000. The algorithm uses a non-linear statistical method based on histogram specification to remap the
intensities in neighboring spectral bands in order to predict intensities. The method presented takes advantage
of destriping methods we have introduced in paper.1 Striping is a well known impairment that affects the
radiometric measurements of MODIS. It is due to the anomalous behavior of the input/output transfer function
of the single detectors in the FPA. There are 10 detector elements along track for each of the 1 km bands, 20 for
each of the 500 m bands, and 40 for the 250 m bands. A more detailed overview of the MODIS data attributes
for various band types are shown in Table 1.

The paper first shows some entropy estimated compression ratios and then argues that the state of the art
compression software lag with respect to these achievable compression ratios. We then present our algorithm by
outlining both the compression as well as decompression part of the lossless compression algorithm.
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Table 1. MODIS data set attributes

Resolution No of sensors No of rows No of columns No of channels Memory (bits) Memory (%)

250m 40 2080*4 1400*4 2 1490944000 %39
500m 20 2080*2 1400*2 5 931840000 %24

1km day 10 2080 1400 14 652288000 %17
1km night 10 2080 1400 17 792064000 %20

Table 2. Estimated compression ratios from entropy estimation

File Name EV 250m EV 500m EV 1km day EV 1km night

MOD01.A2006174.1005.005.2006214124917 3.81 4.04 4.14 5.38
MOD01.A2006175.0915.005.2006214125006 2.84 3.40 3.19 5.31
MOD01.A2006176.0955.005.2006214124831 3.42 3.64 7.23 5.06
MOD01.A2006177.0900.005.2006215131020 3.22 3.46 4.80 5.18
MOD01.A2006179.0850.005.2006214124349 2.75 3.01 3.74 4.66
MOD01.A2006180.0930.005.2006214124332 3.49 3.73 7.09 5.62
MOD01.A2006181.1010.005.2006214124336 3.50 3.77 3.22 5.55

2. COMPRESSION LIMITS AND CURRENT STATE OF THE ART.

We briefly review prior estimates of the maximum compression ratios achievable for MODIS imager data. These
estimates have been based on Shannon’s information theory which equates the optimal compression rate with the
entropy of the images. We have in a previous paper2 developed an algorithm to estimate compression ratios based
on the entropy estimators developed Kozachenko.3 For our sample data sets, the Table 2 shows the estimated
compression ratios that are achievable.

In a paper by the authors,4 we have run the data sets on the state of the art compression algorithms for
image compression for identifying which compression algorithm perform better for MODIS data sets. JPEG2000

Table 3. JPEG2000 compression ratios for MODIS data

File Name EV 250m EV 500m EV 1km day EV 1km night

MOD01.A2006174.1005.005.2006214124917 3.06 2.71 5.19 3.29
MOD01.A2006175.0915.005.2006214125006 2.67 2.48 4.01 3.15
MOD01.A2006176.0955.005.2006214124831 2.75 2.53 5.85 3.25
MOD01.A2006177.0900.005.2006215131020 2.68 2.48 5.43 3.17
MOD01.A2006179.0850.005.2006214124349 2.45 2.25 4.75 2.92
MOD01.A2006180.0930.005.2006214124332 2.74 2.54 5.90 3.34
MOD01.A2006181.1010.005.2006214124336 2.94 2.60 4.18 3.19



consistently outperforms other software that we tried. Table 3 shows the means of the compression ratios for
the same 7 MODIS granules defined in the Table 2 using the Jasper open source library. The compression ratios
are computed based on 16-bit baseline.∗

However, it could be claimed that the algorithms which are primarily developed for 2D images do not achieve
the estimated compression ratios and that there is significant gap which needs to be bridged by developing more
sophisticated algorithms which take both the spatial and spectral information into account.

3. COMPRESSION APPROACH

State of the art compression techniques take advantage of the spatial correlation found in natural images.
However, compression could be bettered by taking the spectral correlation into account. In our algorithm we
predict a channel from the previous one to exploit spectral dependencies. The prediction is done in a different
domain, defined by histogram specification. After prediction, the difference is compressed by 2D compressor, so
our approach can also be considered as pre-processing. However, there are ’more’ of spatial correlations than
spectral, since the image is 2030 by 1354 spatially and only 36 channels spectrally. We would therefore like to
exploit these spatial dependencies by preprocessing images so that they look more correlated with each other
and at the same time make the images smoother to get rid of sensor bias.

Before we describe the algorithm we present two pre-processing steps: destriping and offset removal. We use
destriping to remove the sensor bias as the images we get from the satellite are very stripy. This introduces
discontinuities in the image and standard 2D compression algorithms fail to perform well. In a paper by authors
we have examined two statistical methods that can be used to destripe images: histogram equalization and
histogram specification. In Figure 1, we show a typical destriped image using one of these algorithms.

Another eccentricity that is present in MODIS images is that there are jumps in gray values for the same
sensor. Figure 2 shows a typical set which has these jumps within sensors. We need to remove these offsets so
that we have a smoother image per sensor.
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Figure 1. Destriping using histogram specification

4. COMPRESSION ALGORITHM

The imager granules are divided into mulitpectral data blocks. Each block consists of a some number, K, of
channels. These channels are homogeneous in the sense that the size of the images in that block (number of rows
and columns) are the same. Currently the algorithm is applied to the blocks independently.

∗The data has a dynamic range that is 12-bit. However, it is typically stored and transmitted as 16-bit integers.
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Figure 2. An example of an image which has offsets: per sensor images are shown in the figure.
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Figure 3. Destriped image D
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Figure 4. Destriped image D
′′
2 .

In the initialization phase of the algorithm, an initial channel D1 (e.g. channel 1 of the block) is processed
to remove a constant offsets. These are large discontinuities that result from a constant being added to the
digital counts of a given sensor after some point in the acquisition of the granule (cf. Figure 2). If we denote the
result of offset removal as D′

1, then let D′′
1 denote image after D′

1 has been destriped losslessly using compressed
histogram equalization (cf. Figure 1). Finally, D′′

1 is compressed with conventional 2D compression algorithm
(e.g. JPEG2000). In our implementation we used JPEG2000 but any 2D compressor can be used for this step.

After the initial image is compressed, we present an inductive algorithm that processes image Dk+1 assuming
that the kth image Dk has already been processed (e.g. k = 1). In particular, offsets are removed to yield D′

k
,

and losslessly destriped to give D′′
k
, in a previous step as shown in Figure 3. The same processes are performed

on Dk+1 to obtain an image D′
k+1 with offsets removed and a losslessly destriped image D′′

k+1 (cf. Figure 4). The
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Figure 5. Intensity remapped image D
′′′
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Figure 6. Difference D
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Figure 7. Histograms of D
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1 (top), D
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1 (bottom).



histograms of D′′
k
, and D′′

k+1, are computed (Figure 7). These histograms are used to build an intensity lookup
table (LUT) so that after D′′

k
is remapped using the LUT, the resulting image, D′′′

k
(Figure 5) is a predictor

for D′′
k+1. Note because we have assumed that the whole image Dk has already been stored in a prior step, the

prediction process that creates D′′′
k

may be lossy. The difference D′′
k+1 − D′′′

k
is computed and compressed as

shown in Figure 8.

The compressed data that must be stored to reconstruct losslessly is:

1. A list of values as well as the beginning and end locations where offsets have been applied to the digital
counts.

2. Lossless destriping lookup tables for each sensor (or equivalently Histograms for each of the sensor in each
image)

3. Prediction lookup tables (or equivalently histograms for the images D′′
k
)

4. 2D compressed initial image D′′
1

5. 2D compressed difference images D′′
k+1 − D′′′

k

Figure 8. Block diagram of the iterative step in the Compression algorithm. At each step a destriped and offset corrected
(kth) image which has previously been compressed is used to predict the values of the next ((k + 1)st) image. This is
accomplished using a histogram specification technique to build a (non-linear) intensity LUT. The difference between the
predicted values and the actual values are stored and compressed.

Due to the preprocessing and the underlying spectral correlations between measurements in Dk, and Dk+1

the D′′
k+1 − D′′′

k
is on average small (cf. Figure 6). As a result the D′′

k+1 − D′′′
k

typically compresses well. It
is possible that for some images D′′

k+1 − D′′′
k

may not compress as well as D′′
k+1 alone because the channels k

and k + 1 may sometimes not be correlated. One possible example where we expect this would be if k is a
visible channel and k + 1 is a water vapor channel. This type of issue is easily handled by simply checking if
SizeCompressed(D′′

k+1 − D′′′
k

) > SizeCompressed(D′′
k+1). In such cases we can break the data block into two



Figure 9. Block diagram of the iterative step in the Decompression algorithm. As in compression, at each step a destriped
and offset corrected (kth) image which has previously been decompressed is used to predict the values of the next ((k+1)st)
image.

sequences, the second sequence starting at k +1. This way we can insure that the algorithm will always improve
on the base lossless 2D compression algorithm.

Decompression Algorithm

As we described earlier, compression algorithm runs inductively through the images within the each data
block. Initially the first image is decompressed to obtain D′′

1 . The lossless destriping is inverted on D′′
1 to obtain

a restriped D′
1. The offsets are then restored to recover D1. The inductive recovery of the remaining images

in the data block is shown in Figure 9. Note that although offset removal and lossless destriping are shown in
the diagram for symmetry with the compression diagram, the image D′′

k
is already computed as a byproduct

of the recovery of Dk. To recover Dk+1 we first decompress the stored difference D′′
k+1 − D′′′

k
. We apply our

prediction LUT which has been stored in the compressed file to obtain D′′′
k

from D′′
k
. Then, by adding D′′′

k
to the

decompressed difference D′′
k+1 − D′′′

k
we obtain D′′

k+1. As in the initial step we know can restripe this image to
compute D′

k+1. Restoring the offset information which has been stored in the compressed file we finally recover
Dk+1 losslessly.

We should note also that although we have not been able to fully analyze the complexity of our algorithm,
histogram specification, equalization, and mapping by LUT are among the fastest image processing operations.
Hardware based programmable LUT are common and often part integrated directly into imaging hardware. The
pre-processing step we have presented does not represent a significant increase in processing time over the base
2D lossless compression.

5. RESULTS

In this section we will present tables with compression ratios for the 7 MODIS granules defined in the Table 2 as
well as average bits per sample needed to store compressed MODIS granules. The first column of Table 4 shows
the results of compression of the granules with JPEG2000 using the Jasper open source library. The compression



ratios are computed based on 16-bit baseline.† The middle column shows the results of compression of the
granule using our prediction algorithm in conjunction with spatial compression to obtain a lossless algorithm
which exploits both spectral and spatial redundancy. Despite variation in the granules, our non-linear prediction
consistently outperforms JPEG2000 along. For comparison, the third column of table Table 4 shows entropy
estimates of optimal compression for the same granules using the methods described in.3 While these estimates
show there is still considerable room for improvement, they show that the new algorithm makes a significant
step in optimally compressing the data.

Table 4. Compression ratios for 7 granules using JPEG 2000 (J), the prediction algorithm (P), and approximate achievable
ratios from entropy estimation (E)

J P E

3.23 3.62 4.17
2.87 3.14 3.35
3.06 3.5 4.12
2.97 3.37 3.79
2.70 2.98 3.23
3.07 3.54 4.25
3.04 3.27 3.80

Table 5. Compression ratios using the prediction algorithm (P) and JPEG 2000 (J) for the 2nd channel in 250m bands
on 7 granules

P 3.50 2.57 3.32 3.15 2.71 3.36 2.95

J 2.83 2.38 2.55 2.48 2.30 2.53 2.73

Table 6. Bits per Sample(Bps) using the prediction algorithm (P) and JPEG 2000 (J) for the 2nd channel in 250m bands
on 7 granules

P 4.57 6.22 4.81 5.08 5.91 4.77 5.43

J 5.65 6.72 6.28 6.45 6.95 6.32 5.86

As an important example, we present results for the compression benefit to using the first 250m visible
channel to predict the second in Table 5. Again prediction gives consistent and significant gains over pure 2D
compression algorithms. The is of particular importance because the 250m bands represent a type of “worst
case scenario” with respect to spectral dependencies. In particular this portion of the MODIS data has very

†The data has a dynamic range that is 12-bit. However, it is typically stored and transmitted as 16-bit integers.



Table 7. Compression ratios using the prediction algorithm (P) and JPEG 2000 (J) for 500m bands on 7 granules

2 3 4 5

P 3.52 2.73 3.12 3.05
J 3.19 2.51 2.54 2.22

P 3.42 2.49 2.52 2.81
J 2.85 2.29 2.31 2.12

P 3.53 2.58 3.01 2.98
J 2.90 2.37 2.36 2.09

P 3.41 2.50 2.87 2.79
J 2.82 2.33 2.32 2.07

P 2.91 2.28 2.37 2.53
J 2.42 2.16 2.18 2.02

P 3.57 2.66 3.07 3.00
J 2.88 2.38 2.37 2.10

P 3.17 2.49 2.88 2.90
J 3.00 2.42 2.45 2.19

high spatial resolution and very low spectral resolution. Thus one expects only modest gains over state of the
art conventional image compressors. In light of such expectation the compression gain we have achieved is
remarkable. The same results are shown in Table 6 in terms of bits per sample.

The 500m bands make up a significant portion of the MODIS data partially as a result of their relatively high
spatial resolution. Hence the performance of compression of these can have a significant impact on compression.
Table 7 and Table 8 show the improvement here based on our the prediction based algorithm. The tables are
expressed both in terms of compression ratios and bit per sample for the 4 channels where prediction was used,
You will note that the compression improvement is significant. Here only relationships between neighboring
channels is being exploited leaving opportunities for future work to exploit relationships between non-adjacent
channels.

6. CONCLUSION

The algorithm we have presented is able to significantly improve compression of imager data by exploiting both
spatial and spectral correlations. We take into account sensor specific characteristics. Our non-linear spectral
prediction is based on intensity statistics. By carefully removing sensor artifacts and applying our intensity
prediction we are able to preserve spatial correlations in a manner so that conventional compression algorithms
can exploit them. Thus our method can be thought of as a lossless preprocess to 2D spatial algorithms such
as JPEG2000. We also insure that our preprocess will improve the base algorithm by testing at each stage of
the inductive decompression. For MODIS the algorithm shows significant improvement for the 250 meter, 500
meter and 1 kilometer day channels. This is important because these channels make up the majority of the
data size and thus they have the most significant impact on overall compression. The remaining 1 kilometer
night channels are emissive rather than reflective and thus it is not surprising that they have different statistical
properties. Given the discrepancy between the optimal compression estimates from the computed entropy and
the compression ratios using conventional compression, it is likely that it should be possible to compress these
channels as well but this is the subject of future work.



Table 8. Bits per Sample(Bps) using the prediction algorithm (P) and JPEG 2000 (J) for 500m bands on 7 granules

2 3 4 5

P 4.55 5.87 5.13 5.24
J 5.02 6.38 6.31 7.21

P 4.68 6.43 6.35 5.69
J 5.62 7.00 6.94 7.55

P 4.53 6.20 5.31 5.37
J 5.52 6.74 6.79 7.67

P 4.70 6.40 5.58 5.73
J 5.67 6.86 6.88 7.73

P 5.51 7.01 6.75 6.32
J 6.62 7.41 7.35 7.93

P 4.49 6.02 5.21 5.34
J 5.55 6.72 6.74 7.61

P 5.04 6.43 5.56 5.51
J 5.33 6.62 6.52 7.31
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